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1~ EXIT PROBAI3ILITIES AND OPTIMAL STOCHASTIC CONTROL

by

Wendell II. Fleming

L
Abstract: This paper is concerned with Markov diffusion processes

which obey stochastic differential equations depending on a small

parameter ~~. The parameter enters as a coefficient in the noise

term of the stochastic differential equation . The Ventcel—Freidlin
~~~~~~~~~~~~ 0

estimates give asymptotic formulas (as ~- 0) for such quantities

as the probability of exit from a region D through a given portion

N of the boundary ~-D , the mean exit time, and the probability of

exit by a given time T. A new method to obtain such estimates is

given , using ideas from stochastic control theory .
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EXIT PROBABILITIES AND OPTIMAL STOCHASTIC CONTROL

Wendell H. Fleming

Accompanying Statement

This paper is concerned with Markov diffusion processes

• which obey stochastic differential equations depending on a

small parameter E • The parameter enters as a coefficient in

the noise term of the stochastic differential equation. The

Ventcel—Freidlin estimates give asymptotic formulas (as C -
~ 0)

for such quantities as the probability of exit from a region D

through a given portion N of the boundary ~D, the mean exit time,

and the probability of exit by a given time T. A new method to

obtain such estimates is given, using ideas from stochastic

control theory.

The method involves a logarithmic transformation on

positive solutions g
C
(x) of the elliptic partial differential

equation 92
C
g
L 

= 0, where £“~ is the generator of the diffusion

process. In fact, J
6 

= -e log g
6 

satisfies a nonlinear elliptic

partial differential equation , which is just the dynamic programming

equation associated with the stochastic control problem. The

boundary data ~ (x) for JC (x) are chosen according -to a “penalty

function ” method; for example, if it is desired that exit occur

through N C ~~~ , then we take ~(x) = 0 on N and ~(x) large

on compact subsets of the complement of N. When C = 0 the

dynamic programming equation reduces to the Hamilton-Jacobi equation



Accompanying Statement (Continued) Page 2

for the calculus of variations problem which enters in the Ventcel-

Freidlin estimates. Thus, the stochastic control method provides

not only a different way to prove such t~stimates, but also a differ-

ent intuition to explain why one should expect them to be true.

f



EXIT PROBABILITIES AND OPTIMAL STOCHASTIC CONTROL

Wendell H. Fleming

I
1. Introduction . Consider a Markov diffusion process

on n—dimensional Rn which obeys the stochastic differential

• equations

(1.1) dF = b [~~~(t)]dt + /~ ~~
C
(t~ 1~ t > 0,

with initial data ~~ (0) = x. Here w is an n-dimensional

brownian motion and C a positive parameter.

Let denote the exit time of ~~ (t) from an open bounded

set D C The Ventcel—Freidlin estimates give asymptotic

formulas (as £ -
~ 0) for such quantities as the probability

C N), where N C 3D, the mean exit time ~~~~~ and the

probability P
~~
(L
~ 

< T) of exit by a fixed time T. See El6~ ,

[171, [7, II, Chap. 141. In this paper we give a new method to

obtain such estimates, using ideas from opt~imal stochastic control

theory. However , the paper is self—contained as far as knowledge

of stochastic control is concerned.

There are two kinds of Ventcel—Freidlin estimates. The first

kind give lower estimates for the probability that ~~~t) remains

in a given open set of curves for 0 < t < T; see [7, II, p. 3321.

These lower estimates follow rather easily from the Girsanov

transformation formula. At the end of the paper we outline a

somewhat different derivation of a lower estimate s

k -
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The second kind of Ventcel—Freidlin results give upper

estimates for the probability that ~~ (t) remains in a given

closed set of curves [7, II , p. 334—3451. The proofs are more

technical. Our main results provide estimates of the second kind ,

which suffice to study the problem of exit.

We begin in §2 by making a logarithmic transformation on

positive solutions g~ (x) of the elliptic pai~tial differential

C . .equation -, g = 0 in some region A , where -- is the generator

of the diffusion process ~~
. In fact, let J~ = -C log g

E
• Then

J
C
(x) satisfies the nonlinear partial differential equation (2.5),

with given boundary data J
C 

= ~ on ~D. Theorem 2.1 states

that J
C
(x) is the minimum for a certain stochastic control

problem , in which the drift coefficient b in (1.1) is replaced

by a control process v(t). A similar logarithmic transformation

~as used by E. Hopf [10] to solve Burger ’s equation. Recently,

(and independently of our work) Holland [81, [91 used a

logarithmic transformation of solutions to second order linear

elliptic equations. He obtained a stochastic control representation

of the dominant eigenvalue for Schrodinger ’s equation , and another

proof of the Donsker-Varadhan formula for the dominant eigenvalue

in case of natural boundary conditions.

The Ventcel-Freidlin estimates involve minimizing the

following functional i(~~,O) for various choices of Rn_valued

functions P(t) and 0 > 0. Let -

(1.2) i (P,0) = L[p (t),~~(t)]dt ,

where for x, v C Rn
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(1.3) L (x,v) = (b(x) - v)  ‘a (x)~~~ (h(x )  -

a(x) = rr (x)cy ’ (x).

In particular , let A he open , bounded , with x = ~ (0) in A ;

and let 0 he the exit time of 4 (t) from A . For N C 3~
let I\ (x,N) denote the infimum of 1(~P,O ) subject to the

additional condition ~HU) £ N. Theorem 5.1 implies that

lim ~ log P (
~~ ( i i )  ~ N),x

under some rather stringent hypotheses on h and A . As in

known (161, [171, [7, II, pp. 386—3871 one can then apply

Theorem 5.1 to get results on the exit place and exit time of

Y (t) from a region D, under certain assumptions on the behavior

as t of solutions of the unperturbed system ~~ b [~
0(t)1.

We include one such result in §6.

In §3 we consider instead of (1.2) the corresponding func-

tional /(~P ,O) obtained by adding a term ~ [~~(0)] on the right

side of (1.2). If ~‘(y) 0 for y ~ N and ~ > 0, we may

regard ~ [~~
(
~ ) ]  as a penalty imposed if ~‘ ( t ~~) p~ N at the exit

time ~~. Later (in ~5) we take a sequence of penalty functions

such that ~ 1 (y) 
+-~~ as M ~ for y f N.

In ~7 we consider the nonautonomous form of (1.1) on a finite

time interval s < t < T. There is a considerably simpler proof

of the main result (Theorem 7.1); and no assumptions on the large-

time behavior of the unperturbed system are needed .
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2. The logarithnic transformation. With the stochastic

differential equation (1.1) is associated the differential generator

~~~~~~ namely,

= ~~ ~ k=1a~k (x)~~X~X~ + yx b(x).

Here a = (a.k
) = 00 ’

, and g is the gradient. We assume:

(A1
) h(x),o(x), and the inverse 0 1(x) are bounded ,

Lipschitz functions on R’~.

Since c~~ is bounded , ~~~ is a uniformly elliptic operator for

each ~ ‘ 0.

Let A C be an open , bounded set, with C2 boundary 8A

2 2(i.e., ~~\ is a manifold of class C .) Let ~ ‘ be of class C

and ~ 
—
~ 0. Consider the boundary value problem

(2.1) ~L
g

C 
= 0 in ~

~(x)(2.2) g (x) = exp [— 
~ I on ~~\ .

There is a unique solution g~ , of class C
2 (A) ñ C 1

(~~~) ,

= A U ~A . See [11, Chap. III , §12 , 15]. Moreover ,

~~
[
~~~C
( 51 -

(2.3) g (x) = E
~
exp

~
_ 3,

where is the exit time from ~ of (t).

We make the following logarithmic transformation . Let
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(2.4) J
C () = — c log gC (x)

By elementary calculus , fJ
C 

satisfies in A the nonlinear elliptic

equation

(2.5) 0 = 
~ a.k (x)J 

~ 
+ I1 (x,J

C
),

j,k=l J k d
X

where for each x and row vector p

(2.6) H(x,p) = - pa(x)p ’ + p~b(x).

Then H(x ,- ) is dual to L(x,~~), where L was defined by (1.3), in

the sense of duality for concave and convex functions. In

particular , from (1.3) and (2.6)

(2.7) H(x,p) = min (L(x,v) + p~ v1 .
V

Equation (2.5) is the dynamic programming equation for the

following optimal stochastic control problem. Let ~(t) denote

the state of a system being controlled for t > 0, and v(t) the

ccntrol used at time t (n(t) C Rn, v(t) C R~ for each t). These

processes are defined on some probability space (ca , 9~,P) and are

nonanticipative with respect to some increasing family 
~~~~

of c—algebras , ~~ C ~~ We assume that the control v(t)

is bounded . The state q satisfies the stochastic differential

equation

(2.8) dTi v(t)6t + /~ ~[~~(t)]dw
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with ‘1(0) = x , where x A and ~; is some brownian motion

adapted to

Let denote the exit time of q(t) from A , and let

(2.9) /~ (x,v) = L[~~(t),v(t)]dt + (I~[(~~)J~~.

The stochastic control problem is to minimize t(x,v) given the

initial state x.

From the fact that J ’ (x) is a solution in class

c2 (\) fl C1(~~) of the dynamic programming equation (2.5) , with

= ~ on ~~\ , one can show that J~ (x) is the minimum of

and can characterize an optimal control process v
C
(t).

This result is called a verification Theorem 16 , p. 164], and

is stated below as Theorem 2.1. For completeness we include the

easy proof ., a~ follows .

From (2.5) and (2.8)

(2.10) 
~ 

a.~~J ~ + J~~•v(t) + r~[r)(t),v(t)] > 0,
j,k=1 ~ X

l
.
k

where a
~k~

J \ ,
~~~~~L are evaluated at n (t). We apply the Ito

k 
t o

stochastic differential rule to JC [n (t)] and take E J — — — dt:
JO

(2.11) J~~(x) < S I L(~~(t),v(t)Jdt + EJ~~[1 (0)J.JO

Since J~ = ~ on 3A ,

(2.12) J~ (x) < /
C

( )

- —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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If V is a function from A into R°, we say tha t the

control process v(t) is obtained from the feedback control law V 1

for initial data !I (O) = x, if

(2.13) v(t) = V [ r i ( t )1 ,  0 < t < 0 .

For t > 0 we set v(t) = 0; this does not affect /
C
(x;v). We

admit any feedback V which is bounded and locall’,T Lipschitz

on A .

In particular , let

(2. 14) V C (x )  = lip (x ,J
E (x)) = b (x )  - a (x)J~~(x) ’.

Let v (t),n
C
(t) be the corresponding control process and solution

of (2.8), for given initial data T~~~(O) = x. Equality holds in

(2.10) when v = v
L
,~~ ~~ Then equality also holds in (2.11)

when 0 = 0
E

, with the exit time of fl~ from A . Therefore ,

(2.15) J
L

( )  = /
C
(x;v5 .

From (2,12) and (2.15) we have:

Theorem 2.1. J~ (x) is the minimum of /
C (x ,v), and

an optimal feedback control law. -

3. A deterministic minimum problem. When C = 0 we consider

the following minimum problem . Let Cn (O , co) denote the space of

continuous , Rn_valued functions on [O , ro) , and ~~l the space of
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a 11 p ‘ (‘~~ 0 , ~
‘)  5tI f ’h t h a t  qI iS a ! ~oI t i t ~~’ 1” eon I .1 fltiow~ ilflhl

J I ( t ) I for e,-ic ! T ~ 0. For p and I~) (~ let
()

(1. 1) /(I ,0 ) ( t )  ,p ( I- ) I d~ -4 ! [-I  (0 )  I.

T.e’t A 1 ‘e open hounded , with C hounda r” ~A ; and let ~ he of

class C 2 , T -‘ 0. ~‘tv ~~ti x ‘ A let

( 3 . 2 )  3 ( x )  inf ,f ( — p , 0 ) ,
P . O

where the jut i mnin i I aLen among all I , sueI~ I hat p (0) = x ,

P (t) ~ ~ for 0 t ~~ p (
~~

) L ~A . tinder cond I t ion ( I t i
) be l ow

the m i n i m u m  i s at I a i nod in (:3 . 2) , bu t- we ~;ha 11 not tn~e t h i s  fact.

Note  that if we set 1 = ~~, t i ( t )  q) (t- ) , v(I ) = (t) in (2.8),

then (2 .  ~) )  reduces to ( 3 . 1) . ~1oreov’~r , when () t he dynam~ c pro—

qranimi nq equat ion (2 . 5) red~ices to 0 = II ( x ) . Th i s is the

l l ami  1 ton—Jacob i eoua I i o n  associated w i t h  ( 3. 2) . One migh t

expect the r~’ for e  that -  3 L (x )  tends to

3 ( x )  as -
~~ 0. We sh a l l  prove in !i4 a p ar t  i i !  r e s u l t  of t h i s  k i n d .

~oe Lemma 4 . 2 and the  Note , end of § 4

In ‘ s 3—5 we make (-ho fo l lowing a s su m pt i o n  about  the f u n c t i o n

Il and th e  req ion A .

I f p and p ( t ) ~ f o r  al .I  1 0 , then

f h I p ( t . ) , p ( t - ) j ci t
J o

Let ~• (t; x) d en o t e  the solution of

(3. 1) hlc . ° ( t ;x ) J ,  t 0
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wi th ~°(O;x) = x. Note that (3.3) is the unperturbed version of

(1.1), with C = 0. Let us show that (B1) ir implied by the

following property 
~~~~ 

For u > 0, let A (~ = fy: dist(y,A) t } ~~

(B2) There exist T1 > 0, cz > 0 with the following property:

for ever’.’ x C A , there exists t C [O ,T1] such that

~
0(t;x) C A .

Lemma 3.1. (B2
) implies (B

1
).

Proof. Suppose that  ~‘ C ~ .-l and q ( t )  C ~ for all t > 0 .

Let T1, c~ be as in (B2); and for j = 0 , 1, 2 , . . .  let

( t )  = (t ;~ ( j T 1) ) ,  p~ (t )  = ~ ( t+jT
1

) .

Let N be a Lipschitz constant for b, and let I I  I I~ denote the

sup norm on [O , t J .  Then , for 0 < t < T1,

- ~~~(t )  = J 0~ ~~ ) 1d s + 
f 0

1b~~~~) - b(~~ )]ds ,

II ~ 
- 

~~I I~ < t

2 [f
I
~~~~~. - b(~~ )I

2
ds} + M - 

~~I I 5ds.

2Moreover , by (1.3’ , I v—b(y) J < CL (v ,v) for some C. By

Gronwall’s inequality -

1
T

Il P i - c
~~I I T < c

l[J 

1
L ..~ j)dt]

with C1 = (CT 1)~~exp MT 1. However, ~ ~ I I~~ - ~~~ ‘ T 1 
by (B 2 ) ,
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with x replaced by ~P (~~’P1
), since 45(t) A fo r  0 < t T1.

Thus -

( j + l ) T 1
~

2 C1
2 

< f L ( 1P , q ~)d t , j = 0 , 1, 2 
jT 1

Hence , f L(4 1 ,P ) dt = +-~ ‘ , which proves Lemma 3.1.
J O

Lemma 3.1 has the following simple interpretation . Condition

(B2) says that a particle following the flow (3.3) is swept out

of A in hounded time. If L(~~,~~) is interpreted as a rate

at which energy is expended to resist the flow , then infinite

energy is required to remain in A indefinitely.

4. A semicontinuity result. In this section we consider

lower semicontinuity of J
t
(x) as a function of and x,

at C = O~ For this purpose let us consider initial state x’

tending to a limit x
0 as 0 (x

t 
£ A ) . As in §2 , let

v~ , be the optimal control process and corresponding solution

of (2.8) with r~ (0) = x . Recall that v (t) is obtained via

(2.13) from the feedback control law v~, for 0 < t < and

v’ (t) = 0 for t >

Consider any sequence E
n ? tending to 0 as n ~~, and let

v v , x = x , etc. We then have
ii n

(4.1) 4- 
~
1
~n~~~’ where

= X + 
J0
v~~s~~s. ~n

( t )  
J0

oI 1
~n

s)1dw .

We give C~
’1O ,~’) the following metric , equivalent to uniform



convergence on each finite interval [O,T]:

— . I !~—~I
d( ’p , cp ) = ~~2 l+~ J~ —~P J1 .

For r C C~ [O ,°~) let 1 T denote the set of restrictions ~T to

- . . [O ,T1 of functions ~ c r. Then is totally hounded in

Cn [O,m ) if and only if rT is totally bounded in Cn [0,T] for

each T. In the next lemma we verify the Prokhorov compactness

condition for the sequences n’~ n

Lemma 4.1. Assume that the sequence J~~~(x) is bounded.

Then for eve~y ~ ~
‘ 0 there exist totally bounded sets r1~ ,r2~

such that P(cP n 
C ~1~~) > 1 — 6 , P R ~ c > 1 — 6 , n = 1,2 

Proof. Since V
n

( t )  is an optimal control process

C 
o n

(4.2) J n
o = E{J L[.fl~~(t)~ v~~(t)Idt + 

~~~n
(0n)h)

Since ~ > 0, J n (X) is hounded , and L(y,v) > cf v—h(y) 1
2

0

for some c > O~ E 
~ o 

I~
Tn (t) 

— bin (t)JI 2dt is bounded. Since

v~~(t) = 0 for t > 0 , this implies

E 10 n (t ) I
2dt < CT? 

-

for some CT. Let

= (cP : c~(O) A , I~
(t) — q’(s)1

2 
< C~2~ 6~~~(t—s) for (3 < s, t < jl.

. - -
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I, = {~~~
. th 3 C -

. 
= 1 216 • r 16’ -)

Then is totally bounded . 13y Cauchy-Schwartz ,

1~
IV n (t )  !

2dt ~ c1
2~ 6~~ impl ies  4~~ ‘ F~~~. h ence

P(4~~ Y r~6 ) < 2~~ 6, j = 1,2,...,

~ F16) < 6.

The existence of F2~ with the required property follows from

the assumption that 0 is a bounded func t ion ; see 113 , Proposition ~~~
This proves Lemma 4.1.

Let = O (l+0 )~~~, and note that 0 < < 1. Consider the

triple 
~~n’~ n ’~ n~ ’ regarded as a C2” [O ,”) 10,11—valued random

variable. By Lemma 4.1 there is a subsequence , denoted again by

n ’~ n ’~
’n~ ’ for which the joint probability distribution measures

converge weakly. By Skorokhod ’s theorem 1141 there exist

- 
I 

~~~~~~~~~~ de f i ned on the sample space 0 = [0 ,1] with the

same distribution as n~
cn~

’t’n), such that with probability 1

, .  tend in d—metric to limits $j  and ~y tends to a randomn n n

variable Y as n -
~

Let 7) = 
~ + b ’ I ~~~~~, . Then d(n ,P) 0 wi t - li probability 1.

The exit time 0 of n (t) from A satisfies ~ = 0 (1+~ )~~~~.n n n n n
Thus y < 1 if and only if 0

n tends to a finite limit 0 as

n -
~ 

m~~ We also have P(0) = x°, ~
‘ (t )  ~ for 0 ‘— t ~— 0, and

y ( O )  C ~A if 0 < ~~ .

For n,~~ £ Cn [O ,~~) and 0 < y < 1, def ine
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h(~~,~~,y) = 
f
L [n (t),~~(t)Jdt , ~ =

if ~ 
C otherwise let h(ri ,c~,y) = +~~. Then h is lower

semicontinuous on C [O ,~°) 
X [0,1). This is a well known result;

it can be proved in the same way as [7, II, Lemma 1.2, p. 329].

The random variables h(fl sP n~
Yn) and h(n ,~~~,y) have the

• same distribution . Moreover , with probability 1

0
r n  ~.

(4.3) lim inf L(fl ?47n)dt > f r4 (q,p )dt.
n-~~ 

n

Lemma 4.2. Assume (B1). Then for any x° C A ,

lim in f J C
(x) > J(x°).

£4-O
x -~x

0

Proof. It suffices to show that

E n 0u r n  inf J ( x )  J ( x
fl~~~(x~

for any sequences C ,x tending to 0,x0 with J n (X~ )

bounded . Using the notation above, we may suppose, moreover , that

tend to ~ in d-metric and O~ 0 , with probability 1.

In (4.2) we replace ~~~~~~~~ by ~~~~~~~~ and recall that

~n 
By Fatou ’s lemma

C n
(4.4) u r n  inf J n(X~) > E lim inf 

~ ~~~~~ 
)dt + q’[~~(~ ) ]

~~~~ fl~~’ ‘0

Since J n (xn) is bounded and • > 0 , ( 4 . 3 )  implies
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0~~~~~. —f L (~~,~~)d t  < ~ with probability 1. Since ~ (t) C ~ for 0 < t < 0 ,
0

property (B1) implies 
U with probability 1. Moreover,

÷ •(0) with probability 1, and ~ (0) C 3A. From (3.1),

(4.4), and the fact that ~ is continuous on ~A we then have

C
lim inf J “ ( x ) > E /(~~ , o ) .

Since P ( O )  x 0 , we have / (P , 0)  > J(x0) with probability 1,

and hence E/ (~~,O )  > J (x 0 ) .  This proves Lemma 4 . 2 .

- - Note. It can be shown that J
E
(x) -

~ J(x) as e -
~~ 0 , although

we do not use this f ac t .  A proof that lim sup J C (x )  < J(x) can
C-* 0

be given by the method at the end of §7. The essential idea is

that given c~~, the deterministic control v (t) = ~~(t )  can be

considered as a (suboptimal) control in the stochastic problem

in §2 . A similar comparison technique was used in [3 ,~~5].

5. The exit problem (preliminary result). Let us return to the

exi t problem for solutions E~~ (t )  to (1.1) . In the present

section we consider a bounded open set A , with C2 boundary ~A ,

for which the rather strong assumption (B1) in §3 holds. We prove

Theorem 5.1 , which is then used for the main result in §6.

For N C ~A , x £ A let 
-

(5.1) q(x ,N) = P
~~~~~

(tt~
) C N),

(5.2) I~~(x,N) = — C  log
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with the exit time from A of F,’ (t). i.ct

(5.3) IA (x ,N) = inf L[cp (t),4 (t)]dt ,
p , o J~~~~

where the infimum is taken among all P ~ and 0 such that

P(0) x , P (t) ~ ~ for 0 < t < 0, and p (0) C N. The infimum may

also be taken in the set of (~~,0) for which , in addition , ~ (t)

for 0 < t - -- U (and hence U is the exit time from A for

-p (t) .) We also have

(5.4) 1A~~
<
~~~ 

=

For M = 1,2,..., we introduce a “penalty function ” ~ 0 such that 4~
is class C2, ~~(x) 

-
~~~~ as N -

~ 
“ un i fo rmly  on any compact subset

of Rn — ~ and 4 (x) 0 on N. The following lemma is easilyM

proved , using lower sernicontinuity of J L( ,P)dt with respect
0

to ~ in the d—metric and with respect to 0 • Write ~

for the function in (3.2), when • =

Lemma 5.1. Assume (B1). Then

lim j~~f IM (x) > IA (x
°,(fl.

f l- ’””
0x ~x

Let N0 denote the interior of N , relat i ye t ( I  -~ \ .

Theorem 5.1. Assume (13i) and that N N°. Then

lim I 1~(x,N) = IA (x ,N), uni formly for x ~~~~p~~ com~pact set A C A.
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Proof. It suffices to show that, uniformly for x C A ,

(5.5) 
- 

lim sup I~~(x,N) < IA (x,N °)

(5.6) lirn inf I~~(x ,N)  > IA (x,N).
£ -~ 0

Note that I\ (x,N°) = IA (x ,N) by (5.4), since ~ = N0. Inequality H
(5.5) is an easy consequence of the first Ventcel—Freidlin estimate

[7 , p. 332). We shall indicate another proof of (5.5) at the end

of §7.

To prove (5.6) we introduce the penalty functions 
~M 

above ,

and write g
C 

= gIN 3
C 

= ~ CM when ~ = 

~M 
(~ 2). Since 

~~~~ 
= 0

for y C N, we have by (2.3) and (5.1), q~~(x,N) < g~~~(x) for each M.

By taking logarithms , J~~~(x) < I~~(x ,N). By Lemmas 4.2 and 5.1,

inequality (5.6) holds uniformly for x C A. This proves Theorem 5.1.

6. The problem of exit (continued ). Let ~) he a bounded open

set, with C2 boundary ~D. We illustrate the use of Theorem 5.1

by deriving an asymptotic result about the exit place of ~~ (t)

(Theorem 6.1). With minor variations , the construction used to

prove Theorem 6.1 is the same as in [17 , p. 272117 , pp. 386—3871.

For x, y C D let

r
I~~(x~y) = mm I L [4 ( t ) , 4P- ( t ) J d t

p , 0 ~ o

where the minimum is taken among ‘~ 
C ~~~~~ (1 > 0 such that

‘P (O) = x, ~ (0) = y,  ~ (t) C ~ for 0 < t < ~. By (5.3), for
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x D, N C ~D

ID(x ,N) = inf ID(x?y) 
= mm ID(x,y ).

yCN yEN

We make the following assumptions (cf. [7, pp. 359—360)):

(B3
) h (y )-V (y) 0 for every y ~ ~D, where V ( y )  is the

exterior normal.

(B4) There exists a compact set K C 1) such that:

( i)  K contains the W—limit set of the solution

~°(t;x) of (3.3) for each x C D - N.

(ii) ID (x11 x2) 
= 0 for every x1,x2 

£ K.

(iii) Let K
11 

denote the li—neighborhood of K, and

= D - K
li
. Then there exists c~1 tending to 0 as

-
~~ 0 such that

~ (x,y) < ID(x,y) + cli for all x, y C D - K2~
.

Assumption (B4) holds, in particular , if K consists of a

single point x~ to which (3.3) is asymptotically stable from 1).

By (B4) (ii) , I~~(x 1,y) = I~~(x2~y) if x1, x2 C K. Let

V ID (x,DD) 
= mm ID(x,y) , x C K ,

y u ~~D

= (yC ~~D: ID(x,y ) = V, X C K).

Theorem 6.1. Let (A1), (B3), (B4) hold. Then

- - -  
- -



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -—- --~~~---~~ -, —

15

d ist ~ 
C (~~) , ~~) 0 in~~ robabilit~~ as o 0.

Proof. Given Il ‘- 0 let S he open w i t h  C2 boundary

~S and K C S C K .  Let A = D — S; and let A =

( we take t~ small enough that K
~~1 

C D.) Let N C ~D be closed

w i t h  ~ C N 0 and N° = N (N ° = interior of N relat ive to ~J))

le t  N C 
= — N.  There exists p 0 such tha t , for  x C K ,

ID (x ,N) V , 1D~~~’~~~ ~
- V + 2~’ .

By (B 4) we may choose U small enough that

(6.1) max I\ (z,N) ‘- V + P < mirn I\ (z,N
C).

- zcA -

Now (H 3), (B4) imply (B2). By Lemma 3.1 (B2) implies (B1). By

(6.1) and Theorem 5.1

Cq~~(z , N
( 6 . 2 )  lim —c---—— = 0

~0 q \(z ,N)

uniformly for z C A .

Given x = 
- ( 0 )  in I) , we define random t ime s t , s asp fl

follows

= 1st time t such that ~~ (t) t ~A

= 1st time t t n—1 such that ~~~(t )  C A (n 1)

= 1st time t S
n 

such that ~~ (t) U 3A (n 1).
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Consider the events

= = [~~~~~, 
~~~~~~~~~~~~~~~~ 

L N }

B y = = Tv ’ f~L
(

C
) £ NC).

By the strong rlarkov property

Px (Av) 
= E

~~[x C
-t >sv

— 
P ( B

v
) = E [ X  C-t >s v

with the indicator function of an event C. By ( 6 . 2 )  given

d > 0 there exists Cd such that

C cq~~(z ,N ) < dq~~(z,N)

fo r all z C A, 0 < c < Cd. Since ~~~(s~~) C A , we have P~~
(B

~
) 

~
d P

~~
(Av). Moreover ,

~ 
P(A v) < 

~ 
P (A ~ U B~) = P (T~ < c x )  = 1.

Therefore, for 0 < C <

p (~~C (
L
) ~- NC) = 

~~ 
p (B~ ) < d.

Since ‘1 is arbitrary , this proves Theorem 6.1.

Note. Theorem 6.1 is slightly less general than [7, II,

Theorem 7.2, p. 361]. We have included it to illustrate the use
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of Theorem 5.1. Theorem 6.1 has immediate applications to solutions

to the Dirichlet problem .9~~
1

u
C 

= 0 in D with U ’ = U on ~D

[7, II, p. 3721. For instance, if Y consists of a single point

then u ’ (x) U(y *) as L -
~ 0, for all x C [). If K consists

of a single I~oint x~ fl , then results equivalent to Theorem 5.1

were used in [17, Lemma 1] to show that

Urn ~: lO(J F = V = mm 1D(x ,v).
x y’~~D

7. Finite time results. Let us now consider the nonautonomous

form of (1.1), on a finite time interval s < t < T:

(7.1) d~~ = b [t ,~~~(tfldt + /~ o (t ,~~~ ( t ) ] d w

with initial data c(s) = x. We assume that:

(A2) b(s,x), o(s,x), and the inverse 0 1(s,x)

are bounded , Lipschitz functions on

We fix T and consider initial data (s,x) in the cylinder

Q = (-“ ,T) ~ D. Given N C ~D let

P
(7.2) I (s,x,N) = inf

0 p ,o ~

where the infimum is taken among all ‘P U ~~l and 0 C [s,T)

such that 4~’(s) = x , ~- (t) C D for s < t < 0 , ‘P (O) C N. The

function L is as in (1.3). Let
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C I C
(7.3) 1

0
(s , X ,N ) — C  log 

~sx~~ D < T, — . (~ j~) C N ) .

Theorem 7.1.  Assume (A 2 ) ,  and that  N = N°. Then for each

(s,x) C

u r n  I~~(s,x,N) = I( (s , x ,N ) .
E-~O 

- -

Theorem 7.1 can he rroved by the same method as for Theorem 5.1.

The elliptic equation (2.1) is now to be replaced by the backward

equation 0 = g + ~~~g
1
, where

r C £ C
C ~ ~~[T  ,~~ (~ ) ]

( 7 . 4 )  g ( s , x )  = EsxexPL_ £

C C C C
where t~~~~ = rnin(t~~~T)~ (s ,x )  C ). The function J = -C log g

satisfies the corresponding dynamic programming equation , in time

dependent form. For the finite time problem , assumptions like

(B1), or (B3) and (B4
), are unncessary . However , without (B3)

one may have I0
(s,x ,N) = 0, in which case Theorem 7.1 is Un-

interesting .

For the special case N = ~D we have (see [7, p. 3 4 7 1) :

Corollary. — u r n  C P
5~~

(t
~ 

< T) = I (~ (s ? x ;~~D ) .

A proof of the Corollary using stochastic control ideas was

g iven in [ 5 ] .

Instead of repeating for the finite time case details of the

argument in § ‘s 2-5, let us outline a somewhat different proof

of Theorem 7.1. A slight refinement of the method , which we
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shall not give , shows that the convergence in Theorem 7.1 is

0uniform on compact subsets of Q U {(—~~,T) < N I .

First of all , let us derive the finite time analogue of

Theorem 2.1 in a different way using the Girsanov formula and It~

stochastic differential rule. Let v(t) be a bounded , non-

anticipative control process on [s,TJ , and n the solution of

(7.5) dri = v(t~dt + i/•~
• o [t , r i ( t ) l dw.

Equation (7.5) is obtained from (7.1) by replacing the drift co-

efficient B by v• Let

h ( t )  = 0 1 (t ,n (t)) [b(t ,n (t)) - v(t)J.

By Girsanov ’s formula [7, I, Chap. 71

E ex~~
[ 

~ (r~~~~~(~~~)~~ 
F ex~~
[ 

~ ~~
(O ,~~

-(u)) * ~~ J~~~~
tH

2
dt1

+ -i-— 
J

T
h(t)~~d~

jv~~~~~~5

where 0 is the exit time of (t,fl(t)) from Q and the

exit time of (t,~~
6
(t)) from Q.

Let us require that v(t) = b(t,ri (t)) for t > 0. Then

= L(t,n (t),v(t)), s < t < U ,

and h(t) = 0 for t ‘ 0. By (7.4)

__________
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q (s ,x) F

(7.6) x = ~~~~U ,g (O)) f t , t),v (t))dt - 
J
h(t)’dwl

By Jensen ’s inequality, F exp(—X) > e x p I— E ( X )  ) ,  with  equality if

and only if X = constant almost sure1~~. h owever , I- : ( X )  = (s ,-:,v)

where / is defined as in (2.9). Thus , q ~ exp [C 
— 1/C1 .~~~

get equality, we def in e v , as in 2 usin g th e feedback

control law (cf. (2.14))

V (s ,x )  = b(s,x) — a(s,x) (3 ’ ) ‘.

Let X be defined by (7.6) when n = ‘1
’ , v = v ’ , e = the

exit time of (t , n ’ ( t ) )  from Q. We apply the It~ d i f f er en t i a l

rule to .1’ (t , n ’ ( t ) )  and use the fact that 3’ 
‘~ on ~Q to

conclude that x ’ 1J (s ,X) almost surely. Thus, v
C
(t) is

an optima l control process. This proves the finite time a~alogue

of Theorem 2. 1.

In the last step of this argument we have used the fact that

• 3 ’ (s,x) is of class C 1 ’2 (Q) fl C’(Q) . This follows from the fact

that q ’ = exp (— E ’3 ’ ) is a positive solution of the linear

para lol  Ic equat ion 0 + ~~ C
g 
C 

fly ~1 2 , Chap. IV , § 91

c1’2 (Q) fl C1(~~) provided the restrictions of ~‘(s,x) to

~- ~1D and to ( T I  ‘- D are C 2 . -

It would be in teres t ing to avoid results  from the theory of

parabolic pa r t i a l  d i f f e r e n t i a l  equations a l together  in this

argument. This could perhaps be done u si ng  methods from I2 ,~~6 J

or [1 , Chap. I V I .
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Let us, for brevity, set I~~(s,x;N) = 1 ’ (s ,x ) ,  T .)(s l x;N) = 1(~~,x).

In order to prove Theorem 7.1 it suffices to show that

(7.7) litu SU}) I’ (s , X )  c T(s ,x)
U ‘-0

(7.8) liin inf 1
1
(s,x) t(s,x).

I ‘ -I )

Let us first outline a proof of (7.8) , which  does not involve

• the Prokhorov com 1’actness cr i terion and th e Skorokhod theorem

used in §4 . By introducinq penalty function s as in §5 , it suffices

to prove the fol low inq Lemma 7. 1, wh i ch replaces Lemma 4. 2. Let

Y=  ((—“ ,T) aD) U (ITI ‘- R
n

).

For any s ‘i T and x R~~, let

(7 9) J (s ,x) = mm f I L[t ,~ (t) ,~~ (t) Jdt + ~~~~ [ t I ,~~~~ ( P )

~~ 
,

P J 5

where the minimum is t ak en  among all 4’ U such that 4’ ( s )  = x

• and P such tha t  ( ‘~ ,~~~‘ (a )) f~ 5~ Let — ‘ ioq q

Lemma 7.1. Assume (A2) and that ~ is Lip s ch i tz .  Then

Urn inf 3’ (s ,x) — J ( s ,x).
‘- -~0

Proof. For ~
- 0 let V’ b - a(J~ )’ be the optimal feed-

back control , as in (2.14). Given (s,x) Q, a brownian motion w ,

and to which w is adapted , ~-ie define v ’ (t),’i ’ (t),4’ ’ (t)
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as in § 4 by

= -~~ (t) -f v~~ J o[r,n ’ (r) ldw,

P (t) x + f v ( r ) dr ,

v~ (t) = [t , n ’ ( t )  1, s < t 0 ’

with 0
C 

the exit time from Q of (t,n ’ (t)). For t > 0 ’ ,

v
C

( t )  = 0. Let

U
I

(7.10) G~ = L (t ,q
C ( t ) ,vC ( t ) ) dt  +

Let us show that for some constant M

(7.11) J(s,x)  < G~ + MI I y~C 4’ 
I

f

where I I  H is the sup norm on [s ,TJ . By (1.3) and assumption

(A2), L(t,y,v) > c1f v f
2 

- c2 with c1 0. Hence there is a

constant C1 such that  J ( s ,x)  < if ft) f v ’ ( t )  I
2dt > C 1.

Suppose that  
f:

l v ’- (t J
2dt < C1. An elementary dynamic programming

argument shows that

(7.12) J(s ,x) < J T ( t ,q’ ,4 ’) dt + 3 (~~,t p ( * ) )
5

for any 4’ c ~~ with •(s) = x and any ~ ‘
. [s ,T). Moreover ,

there exists C 2 such that x c R~~, y ~D imply
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(7.13) J(s,x) < ~ (s ,y)  ÷ C2 f y—x~ .

This is seen by taking in (7.9) the linear function

—1P (t) = x + v(t—s), v fy-x f (y—x)

and using the fact that ~ is Lipschitz. If s = T, (7.13) holds

for  all x ,y ,  since J = t’ when s = T. fly (A~ ) and (1.3) there

exists C3 such that

(7.14) fL (t ,y , v) — L ( t ,z,v) I < C3 fy-z~ (l+fv f
2)

for all y, z, v £ R~~. By (7.12) w i t h  U = I )

0 C

J(s,x) < L(t,4’~ ,v
C
)dt +

0
< G

C 
+ J L(t ,’P

L
,v

C) — L(t,g
1
,v

U
) dt +

0

+ J (U ~~~ I 
(U ’ ) )  — ~ (~~

L ~~ (0
£

) )

We use (7.13) with (s,x) replaced by (0 ’ ,~~~(0 ’ )) and y by
C C U Cq (0  ) . In (7. 14) we replace y by 4’ (t) and z by ,i (t)

Then (7.11) holds wi t h  M C3 (T—s+C 1) + C2 .
I • • CSince v (t) is optimal , J (s,x) = EG . By (7.11)

J(s,x) < 31 (s x) + E~~frp
’_4’’ H

Since C is bounded , F f f  n
I _P C

I -
~ 0 as U ‘- 0. This proves

Lemma 7.1. -

— 
-, ..- - - 

-~
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From Lemma 7.1 inequality (7.8) follows, as already indicated .

It remains to consider inequality (7.7). As mentioned in ~5,

(7.7) is an easy consequence of the first Ventccl—Freidlin estimate. —

Let us outline a somewhat different argument to get (7.7). Let

= (-~~,T) X N°. We begin with the following :

Lemma 7.2. GiVen a compact set A C Q U ~~ there exist C
0,
C

such that < p,,
1

(t ~~) C N~~) > exp (—C’ 1) for all (s,x) C A ,

0 <  C <  C
O
.

Lemma 7.2 can be deduced from the Girsanov formula , or by a

direct proof (which we omit). We then prove (7.7) as follows.

Consider any p of class C1 and 0 < T such that

4’(s) = x , p ( t )  ‘ D for s < t < 0 , q~( 0 ) C N°, 4’(t) ~ ~ for t ~~U

Let ~~ be the solution of (7.5) with n
1
(s) = x using the

deterministic control v (t) = ~ (t). Let A° he open relative to

~~, with (t,~~(t)) C A° for s < t < 0 and A° CQ UN *. Now

I
C (s x) satisfies in () the dynamic programming equation

0 = i ’ + ~ a kI
C 

~ 
+ m i n [L ( s , x ,v) + 1

U 
.vJ .

j,k=l 3 x
~~k v X

Moreover , U C
1’2 (O) fl C1 (A 0). Let ~ he t he  exit time of

(t,n
1
(t)) from A°. As in (2.11)

(7.] ) I
C (g x) < EtJ L(t,~~~,~~) d t  + I

I (~
C
~

t (~
€ ))1

As C -+ 0 , f f c j ’— ’P 0 with probability 1 and -
~ o in

probability . Moreover, I
E (t,y) = 0 for (t,y) C N*; and by 
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Lerwna 7.2, I
C (t y) < C for all (t,y) ‘ ~~~ . Then

EI
C
(~~

t
,n (I~~)) < CP[( ,~~~(~~

’ )) / w *]

and the right side tends to 0 as ‘ 0. We then have by (7.15 )

(7.16) Urn SUp I’ (s,x) < J L(t ,q’ ,-p )dt.
• ‘- ‘-0 S

• Since the i n f imum of the r i gh t  side among such ,t , P is I(s,x) , C

we get (7.7).

Note. The same reasoning can be used to prove (5.5). Given

T > 0, let Q = (—~~,T) 
X L \  . Since I~~(x,N) < I~~(O,x,N), (7.16)

with D replaced by A implies

t o .
u r n  sup l~~(x,N) < J L(4’,4’)dt

C-
~~~O 0

f or any ~ such that ‘~‘(0) = x, 4’(t) I A for 0 < t < 0,

‘P (O ) C N° (take any T > 0). The infimum of the right side is

IA (x,N ) .

A stronger result than Theorem 7.1 (or Theorem 5.1) would be

an asymptotic expansion in powers of U of the form -

(7.17) I~ = 1
0 

+ U~ l + ...  + £mE + o(I:m). -

Such an expansion can only hold in regions where I~ is a smooth

solution of the Hamilton-Jacob i equation , constructed from

minimizing curves for (7.2). Such regions were called in [4]

IL _ _ _ _
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regions of strong regularity. It seems likely that the method of

(4] can be adapted to obtain (7.17) in regions of strong regularity .

However , this matter is not considered here. 

-- 
-
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